Locally Identifying Coloring of Graphs

نویسندگان

  • Louis Esperet
  • Sylvain Gravier
  • Mickaël Montassier
  • Pascal Ochem
  • Aline Parreau
چکیده

We introduce the notion of locally identifying coloring of a graph. A proper vertex-coloring c of a graph G is said to be locally identifying, if for any adjacent vertices u and v with distinct closed neighborhood, the sets of colors that appear in the closed neighborhood of u and v are distinct. Let χlid(G) be the minimum number of colors used in a locally identifying vertex-coloring of G. In this paper, we give several bounds on χlid for different families of graphs (planar graphs, some subclasses of perfect graphs, graphs with bounded maximum degree) and prove that deciding whether χlid(G) = 3 for a subcubic bipartite graph G with large girth is an NP-complete problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally identifying coloring in bounded expansion classes of graphs

A proper vertex coloring of a graph is said to be locally identifying if the sets of colors in the closed neighborhood of any two adjacent non-twin vertices are distinct. The lid-chromatic number of a graph is the minimum number of colors used by a locally identifying vertex-coloring. In this paper, we prove that for any graph class of bounded expansion, the lid-chromatic number is bounded. Cla...

متن کامل

Locally identifying colourings for graphs with given maximum degree

A proper vertex-colouring of a graph G is said to be locally identifying if for any pair u,v of adjacent vertices with distinct closed neighbourhoods, the sets of colours in the closed neighbourhoods of u and v are different. We show that any graph G has a locally identifying colouring with 2∆−3∆+3 colours, where ∆ is the maximum degree of G, answering in a positive way a question asked by Espe...

متن کامل

-λ coloring of graphs and Conjecture Δ ^ 2

For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...

متن کامل

On locally-perfect colorings

A (proper) coloring of a finite simple graph (G) is pe#ect if it uses exactly o(G) colors, where o(G) denotes the order of a largest clique in G. A coloring is locally-perfect [3] if it induces on the neighborhood of every vertex v a perfect coloring of this neighborhood. A graph G is perfect (resp. locally-petfect) if every induced subgraph admits a perfect (resp. locally-perfect) coloring. Pr...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012